

CoogNet

College of Technology: CIS 3365

 Jorge Sanchez ∙ Kavon Sabet ∙ Ayoub Fares ∙ Tyler Nullmeier ∙ Daniel Howard ∙ Aleena Khan

Aidahta Natama ∙ Trent Jones ∙ Eduardo Tostado

TABLE OF CONTENTS

College of Technology: CIS 3365 1

EXECUTIVE SUMMARY 3

CLIENT INFORMATION 4

BENEFITS AND COST 5

Project Approach 6

SOLUTION 7

TESTING PROCESS 9

PROJECT IMPROVEMENTS 11

PROJECT DATABASE MAINTENANCE ISSUES 12

LESSONS LEARNED 13

PROJECT SUMMARY 14

REFERENCES 15

PowerPoint Slides 16

APPENDIX A – ERD WITH PRIMARY KEYS AND RELATIONSHIPS ONLY 23

APPENDIX B – ERD WITH ALL ATTRIBUTES AND RELATIONSHIPS 24

APPENDIX C – DATA DICTIONARY 25

APPENDIX D – COPIES OF ALL QUERIES, FORMS, AND REPORTS 27

APPENDIX E – COPIES OF INSERT, UPDATE, & DELETE SCRIPTS 46

APPENDIX F – UPDATED PROBLEMS AND REQUIREMENTS LIST 99

APPENDIX G - Status Reports 101

EXECUTIVE SUMMARY

As a continuation of a two-semester long project, CoogNet decided to work with Jose

Sanchez of TKS Studios to build a functional and cost-efficient application that would be

capable of storing their client information. The scope of this project is based on the method in

which TKS stores project information and generates reports for their clients. CoogNet has

analyzed the current system and determined it is inefficient and lacking in functionality.

TKS Studios’ current business problems include not having an information system in

place. Currently, TKS Studios is using several off-the-shelf applications to complete their tasks

including Quickbooks and Buildertrend. Buildertrend, however, does not facilitate the task of

transferring data to Quickbooks in order to create invoices. Additionally, Buildertrend does not

have a very smartphone-friendly interface which makes it difficult for TKS Studio to add or edit

project information while on the construction site. On average, this takes an additional hour per

project and if notes of on-site assessment are corrupted it could lead to errors.

To resolve these obstacles, CoogNet’s solution was to construct a reliable system that

will be able to handle the capacity of their work. This project will be carried out by completing

weekly deliverables to guarantee the success of the application.

The new application will allow the company to work on a variety of devices and can

accomplish all the tasks required in TKS Studios’ daily schedule. Once our clients enter a

customer’s information it will lead them to pre-defined automated forms that will record project

details. This will allow TKS to further save time while entering information. Additionally, our

solution will allow the generation of invoices directly, without Quickbooks as an intermediary.

CLIENT INFORMATION

TKS Studios was founded in July 2018, though, Jose Sanchez, the organization’s founder

and CEO, has been in the building and contracting industry for more than six years. Mr. Sanchez

is skilled in residential construction, Computer-Aided Design (CAD), Project Management, and

Budgeting. He is also a strong business development professional with an Architecture degree, a

minor in Construction Management, and a certificate in entrepreneurship. At TKS Studios, they

take great pride in their experience and expertise, and in the quality of their work as well as the

customer service that they provide.

TKS Studios’ work is concentrated on the importance of the small details that are

required to produce a cohesive and purposeful design that is deserving of being built. Since their

work does not stop at design, they can shepherd projects to completion, making sure that along

the way nothing is overlooked, and details are improved. To understand the needs and

expectations of their customers, they take great care to work and communicate with every

customer in a personal and professional manner. They provide their customers with the tools,

knowledge, and confidence to make the design/build process simple and enjoyable.

BENEFITS AND COST

Required Economic Feasibility

The proposed system has the potential to reduce monthly expenditures by approximately

90%. Currently, Buildertrend costs our client $90 per month or $1080 annually. The proposed

system, however, may cost closer to $8 per month. Additionally, our client informed us that he

tends to wait until he arrives back at the office to input information gathered in the field. We

believe that this habit could be a costly misappropriation of time that we can curb by

implementing an improved interface in the proposed system. The estimated costs for developing

the new system are as follows:

● Develop database with friendly user interface: The current estimation of cost for our

team’s labor is approximately 130 hours to develop the database, application program

and user interface for our client. At a rate of $40/hr and 130 hours, the initial labor costs

come to $5,200. Once our student free-labor discount is applied, labor costs will be

reduced to $0.

● Hosting database and web server online: The cost for housing the system online will

vary depending on the service provider; however, our research yielded an average of $8

per month which totals $96 annually.

● Total: Labor ($5,200 * 9) + monthly fees ($96) = $46,896.00

● Total after discount: Only the monthly server fees, which are $96 for the first year or $8

per month.

Project Approach

From the start of the development of the application and database design, CoogNet’s

most important guidelines are the business rules, along with the problems and requirements listed

by TKS Studios. Through these two guidelines, and by analyzing the current information

systems of TKS Studios, we were able to determine the major entities and relationship data

models. After identifying the major entities and relationships, we map out the primary and

foreign keys based on the interactions that could exist between each entity. Once all the

necessary information was gathered, we were able to develop the entity relationship diagram

(ERD) which allowed us to visualize our data model and acted as a framework for a database.

With the creation of the framework, we could further develop the ERD in detail by adding all the

attributes required by the entities and relationships. Developing a solid framework of entities and

relationships was our number one priority. We figured that if we could successfully identify all

the entities and relationships, we could always add more attributes and functionality later. Once

our ERD was finished, we began to select the software that would power our project’s graphical

user interface.

SOLUTION

 The initial problem that our client was currently facing was that, our client was using a

combination of applications in order to accomplish the tasks of invoicing and storing project and

client information while offering additional unnecessary functions. Our current application

includes the task listed above and adds additional functionalities requested by TKS Studios. The

next request is to allow the application to be able to store, export, edit, update and delete client,

contractor, invoicing and client information. Sample update query for FirstName of Contractor

by Contracter ID:

UPDATE Contractor

SET Cont_FirstName = 'Joe'

WHERE Cont_ID = 1;

Before Query:

After Query:

All key decisions from the original group design that lead to our current design had to do

with the business rules, requirements, and also the table requirement of 35 or more tables for our

database. For example, one of the business rules is that TKS Studios would like to follow up on

all project proposals that could potentially lead to a job. Project proposals are the initial phase of

gaining contact information from a potential client and is represented as Job Proposal on the

ERD. The Job Proposal has a many-to-one relationship with a Customer on the ERD which

allows the formation of a relationship between customer and job proposal. For additional

information required by a project lead, Job Proposal has a one-to-many relationship with Site

Survey where the project managers upload notes for reviewing the potential project site. TKS

Studios also requested that pictures be stored for future use, in order to accommodate this a one-

to-many relationship between Site Survey and Survey Pictures was developed. After reviewing

all this content and presenting a draft invoice the job lead could become a project site, which is

represented in a one-to-one relationship in the ERD through Job Proposal and Job. Allowing our

database design to cover all aspects of a project lead, and requirements of the business rules.

TESTING PROCESS

Purpose:

The purpose of the application building and testing phase is to analyze the efficiency,

functionality, and accuracy of application functionalities. Using the project goals and the

company’s requirements as a baseline to ensure that our application satisfies the companies

goals. The additional benefit of testing allows is to identify any current problems and potential

problems with the continuous iterations of our application. Another purpose of our application

testing is to ensure the integrity and availability of our database.

Objectives:

The objectives to be accomplished by testing the database, application, and interface are:

1) Ensure that interface, application, and database can successfully interact.

2) Ensure that the user can request and update data through the interface from the database

3) Ensure that the data entered in the interface is correctly inserted and stored in the

database.

4) Ensure that the interface is simple and user-friendly.

5) Ensure that all company goals are successfully interpreted in our application.

Design:

The design part of this test is a two-part process. The first part dealt with the database

side of our application and the other side concerned our user interface. We wanted to develop a

simple interface with limited options for it to be easier to understand and learn. It is necessary

that this interface be compatible and capable of executing tasks, finding tables quickly and living

up to what TKS expects.

Importing/Exporting:

It is extremely important that we can import and export csv files into and out of the

application. This was the first step we tested before progressing in the project. We will learn

what is needed to achieve this and any difficulties we can overcome now versus during the

development phase of the application. CSV files will need to be able to link to TKS Studios

system software.

Database:

The database itself is the most important part of the entire project compared to the

interface portion and needs to be tested very thoroughly. The information within the database

must be easily manipulated and sorted in a logical order. The information within the database

must be created, imported, updated, and deleted.

PROJECT IMPROVEMENTS

List of project improvements:

1. Increase granularity of customer invoices by adding a breakdown of the costs involved in

each task.

2. Add more useful attributes to all tables.

3. Would add material count to job material count to Job_Material table so that it is clear on

the expected use of each material that is required for a job.

4. Keeping track of vehicles that are not in accounts payable.

5. Add entities to keep track of the materials inventory.

After analyzing the current database design, many faults can be found within our database design

and have listed the improvements that would be made by priority with one being the highest. For

example, one of TKS Studios’ goals is to be able to expand to a four-man company and own

company vehicles. In order to allow this, the database includes accounts payable to be recorded

through the application. Upon testing this feature, we have come to realize that after a vehicle is

paid in full it will become an orphan in the database instead of being archived in a different

location and being tagged as paid off.

PROJECT DATABASE MAINTENANCE ISSUES

List of ongoing maintenance procedures that should be conducted on an ongoing basis:

1. Empty rows that are created and insufficient data should be removed throughout the

database.

2. Use bulk copy program utility in a batch file in order to automatically create a full

backup of the database.

3. Use Robocopy script which allows for incremental backups.

TKS Studio is a home remodeling company that will receive many project proposals but not all

will lead to a job. This will lead to having an increasingly growing amount of useless data and

rows that will fill up the database. In order to prevent this, a data clean up method will be

required. This can be accomplished by allowing a script to compare both the job proposals and

job tables and delete unwanted data. Scripts, batch files, and utilities will allow TKS Studio to

clean up tables, backup data, archive data, maintain the efficiency of lookup tables, recover data

in case of potential disasters, and shrink the amount of data stored in the database.

LESSONS LEARNED

Throughout this project, our team learned so many important things that are helpful for

future projects such as how to identify the problem by collecting and gathering data. This allows

us to recognize the problem and find a solution. We have also learned how to organize tables and

create SQL scripts. Additionally, we gained an understanding of how to model our data with

entity relationship diagrams (ERD) and data dictionaries. Overall, however, the greatest lesson

that we learned is that a well-designed database takes an immense amount of time, effort, and

organization to create. Database design is an iterative process. While we are proud of the work

we did on this project, we only managed to get to iterate through the database design process

eight times. Given more time, without a doubt, our team could greatly expand upon the data

model that we created.

PROJECT SUMMARY

After analyzing the business rules and requirements list our team was able to identify the

major entities and relationships in order to have an efficient database design. With the basic data

information established, our team began to construct the entity-relationship data model and

began normalizing entity attributes. Having established our ERD, after normalization the primary

and foreign keys became increasingly more obvious. This allowed our team to create a database

design that would be efficient and fulfil all the required information needed for the future and

current size of TKS Studios. Having created our design all that was left was to create our SQL

scripts and develop an interface that would allow TKS Studio to easily update, delete, read and

write any information into the database. Through testing and feedback from our client, our team

was able to develop a custom and easy to use and efficient information system that can expand

alongside the business it serves.

REFERENCES

● Coronel, C. & Morris, S. (2019) Database Systems: Design, Implementation, &

Management

● Sanchez, J. (2019, Feb 8). Personal Interview

● Azure SQL Database pricing. (n.d.). Retrieved from https://azure.microsoft.com/en-

us/pricing/details/sql-

database/managed/?&OCID=AID719825_SEM_WXBiicq6&lnkd=Google_Azure_Brand

&gclid=CjwKCAjwjIHeBRAnEiwAhYT2h-d6Fpe7TjWqVpVu3EJ-

8jtRzaAVdizGEoETXMmUCOTH9gGCNbmOEhoC7pkQAvD_BwE&dclid=CKXI1Lvngd

4CFQeTswodc6MN6w

● CREATE LOGIN (Transact-SQL). (2019). Retrieved from https://docs.microsoft.com/en-

us/sql/t-sql/statements/create-login-transact-sql?view=sql-server-ver15

● CREATE PROCEDURE (Transact-SQL). (2019). Retrieved from

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-

sql?view=sql-server-ver15

● ALTER TABLE (Transact-SQL). (2019). Retrieved from https://docs.microsoft.com/en-

us/sql/t-sql/statements/alter-table-transact-sql?view=sql-server-ver15

● Generate or Export the data dictionary of SQL Server database Schema using SQL

Query. (2018). Retrieved from https://sqlarts.blogspot.com/2017/12/generate-data-

dictionary-for-sql.html

PowerPoint Slides

APPENDIX A – ERD WITH PRIMARY KEYS AND RELATIONSHIPS ONLY

APPENDIX B – ERD WITH ALL ATTRIBUTES AND RELATIONSHIPS

APPENDIX C – DATA DICTIONARY

APPENDIX D – COPIES OF ALL QUERIES, FORMS, AND REPORTS

Query 1- Select all Vehicles in all departments

Query 2-

Query 4-

Query 5

Query 6

APPENDIX E – COPIES OF INSERT, UPDATE, & DELETE SCRIPTS

INSERT SCRIPTS:

Insert Query 1

This query inserts a new row into the Customer Table:

INSERT INTO Customer

VALUES (custfirstname, custlastname, custaddress);

Example:

Pure SQL query:

INSERT INTO Customer

VALUES ('Joe', 'Schmoe', '1234 Test St, Austin, TX 12345');

Before Query:

After Query:

Insert Query 2

This query inserts a new row into the Review_Type table:

INSERT INTO Review_Type

VALUES (rvwtypename, revwreq);

Pure SQL Query:

INSERT INTO Review_Type

VALUES ('Fire Code Inspection', 'The structure is searched for any and all fire hazards');

Before Query:

After Query:

Insert Query 3

This query inserts a new row into the ContractorTable:

INSERT INTO Contractor

VALUES (contfistname, contlastname, contsalary);

Example:

Pure SQL Query:

INSERT INTO Contractor

VALUES ('Joe', 'Schmoe', 40000);

Before Query:

After Query:

Insert Query 4

This query inserts a row into the Supplier table:

INSERT INTO Supplier

VALUES (suppliername);

Example:

Pure SQL Query:

INSERT INTO Supplier

VALUES ('Wholesale Construction');

Before Query:

After Query:

Insert Query 5

This query inserts a row into the Task Table

INSERT INTO TASK

VALUES (jobid, statusid, taskname);

Example:

Pure SQL Query:

INSERT INTO TASK

VALUES (2,3, 'Replace lighting on front porch');

Before Query:

After Query:

Insert Query 6

This query inserts a row into the Task_Problem Table:

INSERT INTO TASK_Problem

VALUES (taskid, prblmid);

Example:

Pure SQL Query:

INSERT INTO TASK_Problem

VALUES (1,3);

Before Query:

After Query:

Insert Query 7

This query inserts a new row into the Vehicle Table:

INSERT INTO Vehicle

VALUES (fleetid, vehiclemake, vehiclemodel, vehiclecolor);

Example:

Pure SQL Query:

INSERT INTO Vehicle

VALUES (1,'Ford', 'F-150', 'Blue');

Before Query:

After Query:

Insert Query 8

This query inserts a row into Work_Order:

INSERT INTO Work_Order

VALUES (contrid, projid);

Example:

Pure SQL Query:

INSERT INTO Work_Order

VALUES (3,2);

Before Query:

After Query:

Insert Query 9

This Inserts a row into the Department Table:

INSERT INTO Department

SET Dept_Name = deptname

WHERE Dept_ID = selection;

Example:

Pure SQL Query:

INSERT INTO Department

VALUES ('Accounting');

Before Query:

After Query:

Insert Query 10

This query inserts a row into the Problem table:

INSERT INTO Problem

SET Prblm_Desc = prblmdesc

WHERE Prblm_ID = selection;

Example:

Pure SQL Query:

INSERT INTO Problem

VALUES ('Needs evalaluation');

Before Query:

After Query:

Insert Query 11

This query Inserts a row into the Review Status table:

INSERT INTO Review_Status

SET RvwStatus_Name = prblmdesc

WHERE RvwStatus_ID = selection;

Example:

Pure SQL Query:

INSERT INTO Review_Status

VALUES ('Incomplete');

Before Query:

After Query:

Insert Query 12

This query inserts a row into the Employee History Table:

INSERT INTO Employee_History

VALUES (emphistdate, empid, emphistsalary);

Example:

Pure SQL Query:

INSERT INTO Employee_History

VALUES (GETDATE(), 2, 50000);

Before Query:

After Query:

Insert Query 13

This query assigns an employee a new project by adding a row into the Employee_Project

Table

SQL

Example:

Pure SQL Query:

INSERT INTO Employee_Project

VALUES (3, 1);

Before Query:

After Query:

Insert Query 14

This query Inserts a row into the Job_Material Table :

INSERT INTO Job_Material

VALUES (jobid, materialid);

Example:

Pure SQL Query:

INSERT INTO Job_Material

VALUES (3, 2);

Before Query:

After Query:

Insert Query 15

This query inserts a row into the Maintenance table:

INSERT INTO Maintenance

VALUES (vehicleid, maintenancedesc, maintenencecost, maintinencedate);

Example:

Pure SQL Query:

INSERT INTO Maintenance

VALUES (2,'Tire rotation', 40.34, GETDATE());

Before Query:

After Query:

Insert Query 16

This query inserts a row into the Material Table :

INSERT INTO Material

VALUES (mattypecode, matname, matcostcode);

Example:

Pure SQL Query:

INSERT INTO Material

VALUES (6, '10x12 feet','PT32');

Before Query:

After Query:

Insert Query 17

This query inserts a row into the Material_Type Table

INSERT INTO Material_Type

VALUES (materialtype);

Example:

Pure SQL Query:

INSERT INTO Material_Type

VALUES ('Plywood Sheet');

Before Query:

After Query:

Insert Query 18

This query inserts a row into the Project Table :

INSERT INTO Project

VALUES (projectname);

Example:

Pure SQL Query:

INSERT INTO Project

VALUES ('Holmes Developers Job');

Before Query:

After Query:

UPDATE SCRIPTS:

Update Query 1

This query updates an entry in the ‘Customer’ table by selection of Customer_ID:

UPDATE Customer

SET Cust_FirstName = custfirstname , Cust_LastName = custlastname, Cust_Address =

custaddress

WHERE Cust_ID = selection;

Example:

Pure SQL query:

UPDATE Customer

SET Cust_FirstName = 'Tony' , Cust_LastName = 'Rambone', Cust_Address = '4800 Calhoun

Rd, Houston, TX 77004'

WHERE Cust_ID = 2;

Before Query:

After Query:

Update Query 2

This query updates only an address for a customer by selected Customer ID:

UPDATE Customer

SET Cust_Address = custaddress

WHERE Cust_ID = selection;

jdbc:sqlserver://CoT-CIS3365-09;databaseName=CoognetTKSExample:

Pure SQL Query:

UPDATE Customer

SET Cust_Address = '4800 Calhoun Rd, Houston, TX 77004'

WHERE Cust_ID = 2;

Before Query:

After Query:

Update Query 3

This Query updates a Contractor row entry that is selected by the Contractor ID:

UPDATE Contractor

SET Cont_FirstName = contfirstname, Cont_LastName = contlastname, Cont_Salary =

contsalary

WHERE Cont_ID = selection;

Example:

Pure SQL Query:

UPDATE Contractor

SET Cont_FirstName = 'Shaun', Cont_LastName = 'Humphrey', Cont_Salary = 100000

WHERE Cont_ID = 1;

Before Query:

After Query:

UPDATE QUERY 4

This query updates a Contractors Salary by the Contractor ID:

UPDATE Contractor

SET Cont_Salary = contsalary

WHERE Cont_ID = selection;

Example:

Pure SQL Query:

UPDATE Contractor

SET Cont_Salary = 151000

WHERE Cont_ID = 1;

Before Query:

After Query:

UPDATE QUERY 5

This query changes the FirstName of a Contractor by Contractor ID:

UPDATE Contractor

SET Cont_FirstName = contfirstname

WHERE Cont_ID = selection;

Example:

Pure SQL Query:

UPDATE Contractor

SET Cont_FirstName = 'Joe'

WHERE Cont_ID = 1;

Before Query:

After Query:

UPDATE QUERY 6

This query changes the LastName of a Contractor by Contractor ID:

UPDATE Contractor

SET Cont_LastName = contlastname

WHERE Cont_ID = selection;

Example:

Pure SQL Query:

UPDATE Contractor

SET Cont_FirstName = 'Smith'

WHERE Cont_ID = 1;

Before Query:

After Query:

UPDATE QUERY 7

This query updates a customer FirstName by the selected Customer ID:

UPDATE Customer

SET Cust_FirstName = custfirstname

WHERE Cust_ID = selection;

Example:

Pure SQL Query:

UPDATE Customer

SET Cust_FirstName = 'Bret'

WHERE Cust_ID = 1;

Before Query:

After Query:

UPDATE QUERY 8

This query updates a customer LastName by the selected Customer ID:

UPDATE Customer

SET Cust_LastName = custlastname

WHERE Cust_ID = selection;

Example:

Pure SQL Query:

UPDATE Customer

SET Cust_LastName = 'Hill'

WHERE Cust_ID = 1;

Before Query:

After Query:

UPDATE QUERY 9

This query updates the Department name by selection of Department ID:

UPDATE Department

SET Dept_Name = deptname

WHERE Dept_ID = selection;

Example:

Pure SQL Query:

UPDATE Department

SET Dept_Name = 'Accounting'

WHERE Dept_ID = 1;

Before Query:

After Query:

UPDATE QUERY 10

This query updates the problem description by Problem ID:

UPDATE Problem

SET Prblm_Desc = prblmdesc

WHERE Prblm_ID = selection;

Example:

Pure SQL Query:

UPDATE Problem

SET Prblm_Desc = 'moving material problems'

WHERE Prblm_ID = 1;

Before Query:

After Query:

UPDATE QUERY 11

This query updates the Review status name where the review status ID matches the selection:

UPDATE Review_Status

SET RvwStatus_Name = prblmdesc

WHERE RvwStatus_ID = selection;

Example:

Pure SQL Query:

UPDATE Review_Status

SET RvwStatus_Name = 'Partial Completion'

WHERE RvwStatus_ID = 1;

Before Query:

After Query:

Update Query 12

This query updates an Employee_History entry by the given Employee salary:

UPDATE Employee_History

SET Emp_ID = empid

WHERE Emp_Salary = empsalary;

Example:

Pure SQL Query:

UPDATE Employee_History

SET Emp_ID = 2

WHERE Emp_Salary = 65000;

Before Query:

After Query:

Update Query 13

This query changes an employees assigned project:

UPDATE Employee_Project

SET Project_ID = selectedempid

WHERE Emp_ID=empid AND Project_ID = projid;

Example:

Pure SQL Query:

UPDATE Employee_Project

SET Project_ID = 1

WHERE Emp_ID=3 AND Project_ID = 3;

Before Query:

After Query:

Update Query 14

This query updates a row into the Job_Material Table :

UPDATE Job_Material

SET Material_ID = matid

WHERE Job_ID = jobid;

Example:

Pure SQL Query:

UPDATE Job_Material

SET Material_ID = 1

WHERE Job_ID = 2;

Before Query:

After Query:

Update Query 15

This query updates the vehicle ID in the maintenance table:

UPDATE Maintenance

SET Vehicle_ID = vehicleid

WHERE Maintenance_ID = selectedid;

Example:

Pure SQL Query:

UPDATE Maintenance

SET Vehicle_ID = 2

WHERE Maintenance_ID = 1;

Before Query:

After Query:

Update Query 16

This query updates a row into the Material Table :

UPDATE Material

SET Material_Name = matname

WHERE Material_ID = selectionid;

Example:

Pure SQL Query:

UPDATE Material

SET Material_Name = ‘Water Proof’

WHERE Material_ID = 1;

Before Query:

After Query:

Update Query 17

This query updates a row into the Material_Type Table

UPDATE Material_Type

SET MatType_Name = mattypename

WHERE MatType_Code = selectionid;

Example:

Pure SQL Query:

UPDATE Material_Type

SET MatType_Name = 'Fiberglass Insulation'

WHERE MatType_Code = 1;

Before Query:

After Query:

Update Query 18

This query updates a row into the Project Table :

UPDATE Project

SET Project_Name = projname

WHERE Project_ID = selectionid;

Example:

Pure SQL Query:

UPDATE Project

SET Project_Name = ‘Kitchen Renovation Woodlane’

WHERE Project_ID = 1;

Before Query:

After Query:

DELETE SCRIPTS:

Delete Query 1

This query Deletes a row into the Customer Table:

DELETE FROM Customer

WHERE Cust_ID = custid;

Example:

Pure SQL query:

DELETE FROM Customer

WHERE Cust_ID = 5;

Before Query:

After Query:

Delete Query 2

This query Deletes a row into the Review_Type table:

DELETE FROM Review_Type

WHERE Rvw_TypeID = rvwtypeid;

Pure SQL Query:

DELETE FROM Review_Type

WHERE Rvw_TypeID = 7;

Before Query:

After Query:

Delete Query 3

This query Deletes a row into the ContractorTable:

DELETE FROM Contractor

WHERE Cont_ID = contid;

Example:

Pure SQL Query:

DELETE FROM Contractor

WHERE Cont_ID = 5;

Before Query:

After Query:

Delete Query 4

This query Deletes a row into the Supplier table:

DELETE FROM Supplier

WHERE (suppliername);

Example:

Pure SQL Query:

DELETE FROM Supplier

WHERE ('Wholesale Construction');

Before Query:

After Query:

Delete Query 5

This query Deletes a row into the Task Table

DELETE FROM Task

WHERE Task_ID = taskid;

Example:

Pure SQL Query:

DELETE FROM Task

WHERE Task_ID = 11;

Before Query:

After Query:

Delete Query 6

This query Deletes a row into the Task_Problem Table:

DELETE FROM TASK_Problem

WHERE (taskid, prblmid);

Example:

Pure SQL Query:

DELETE FROM Task_Problem

WHERE Task_ID = 1 AND Prblm_ID = 3;

Before Query:

After Query:

Delete Query 7

This query Deletes a row into the Vehicle Table:

DELETE FROM Vehicle

WHERE Vehicle_ID = vehicleid;

Example:

Pure SQL Query:

DELETE FROM Vehicle

WHERE Vehicle_ID = 5;

Before Query:

After Query:

Delete Query 8

This query Deletes a row into Work_Order:

DELETE FROM Work_Order

WHERE Cont_ID = contid AND Project_ID = projid;

Example:

Pure SQL Query:

DELETE FROM Work_Order

WHERE Cont_ID = 3 AND Project_ID = 2;

Before Query:

After Query:

Delete Query 9

This Deletes a row into the Department Table:

DELETE FROM Department

WHERE Dept_ID = deptid;

Example:

Pure SQL Query:

DELETE FROM Department

WHERE Dept_ID = 7;

Before Query:

After Query:

Delete Query 10

This query Deletes a row into the Problem table:

DELETE FROM Problem

WHERE Prblm_ID = prblmid;

Example:

Pure SQL Query:

DELETE FROM Problem

WHERE Prblm_ID = 6;

Before Query:

After Query:

Delete Query 11

This query Deletes a row into the Review Status table:

DELETE FROM Review_Status

WHERE RvwStatus_ID = rvwstatusid;

Example:

Pure SQL Query:

DELETE FROM Review_Status

WHERE RvwStatus_ID = 6;

Before Query:

After Query:

Delete Query 12

This query Deletes a row into the Employee History Table:

DELETE FROM Employee_History

WHERE Emp_Salary=empsalary;

Example:

Pure SQL Query:

DELETE FROM Employee_History

WHERE Emp_Salary=50000;

Before Query:

After Query:

Delete Query 13

This query assigns deletes an entry from the Employee_Project Table:

DELETE FROM Employee_Project

WHERE Emp_ID=empid AND Project_ID = projid;

Example:

Pure SQL Query:

DELETE FROM Employee_Project

WHERE Emp_ID=3 AND Project_ID = 1;

Before Query:

After Query:

Delete Query 14

This query Deletes a row into the Job_Material Table :

DELETE FROM Job_Material

WHERE (jobid, materialid);

Example:

Pure SQL Query:

DELETE FROM Job_Material

WHERE Job_ID = 3 AND Material_ID = 2;

Before Query:

After Query:

Delete Query 15

This query Deletes a row into the Maintenance table:

DELETE FROM Maintenance

WHERE Maintenance_ID = maintID;

Example:

Pure SQL Query:

DELETE FROM Maintenance

WHERE Maintenance_ID = 3;

Before Query:

After Query:

Delete Query 16

This query Deletes a row into the Material Table :

DELETE FROM Material

WHERE Material_ID=materialid;

Example:

Pure SQL Query:

DELETE FROM Material

WHERE Material_ID=7;

Before Query:

After Query:

Delete Query 17

This query Deletes a row into the Material_Type Table

DELETE FROM Material_Type

WHERE MatType_Code = mattypecode;

Example:

Pure SQL Query:

DELETE FROM Material_Type

WHERE MatType_Code = 6;

Before Query:

After Query:

Delete Query 18

This query Deletes a row into the Project Table :

DELETE FROM Project

WHERE (projectname);

Example:

Pure SQL Query:

DELETE FROM Project

WHERE ('Holmes Developers Job');

Before Query:

After Query:

APPENDIX F – UPDATED PROBLEMS AND REQUIREMENTS LIST

Problems List:

• Unable to export data from Buildertrend application to create an invoice.

• No existing database to be able to store all information locally. It is all stored on the

Buildertrend application.

Requirement List:

• User interface should be friendly and easy to use and learn.

• Ability to store all client information.

• Able to display tables of current project, customers, and contractor work.

• Allow to create an invoice on the same application.

• Permit the storage of additional notes and pictures that will be matched to project.

APPENDIX G - Status Reports

Team Status Report

Group Name: CoogNet
Project Manager: Kavon Sabet/ Daniel Howard Date: August 23, 2019

Our first team status report. This week the CoogNet team has been working on

the following deliverables listed below. We have not put much work into our project yet,

we are now getting acquainted with what is desired and needs to be done. The following

is a breakdown for what each member is expected to do and has done so far.

CoogNet Deliverable Description
Start

Date/Time
Hours

Worked
Est. Hours
Remaining

Kavon Sabet

 Group Meeting 8/21/2019 19:00 1 N/A

 Normalization 8/21/2019 8:00 0 4

 CSV Files 8/21/2019 8:00 0 2

SQL General
Programming 8/21/2019 8:00 0 6

 1

Daniel Howard

 Group Meeting 8/21/2019 8:00 0 N/A

 Java Forms 8/21/2019 8:00 0 40

 ERD Tables 8/21/2019 8:00 2 2

SQL General
Programming 8/21/2019 8:00 0 6

 2

Jorge Sanchez

 Group Meeting 8/21/2019 19:00 1 N/A

Java General
Programming 8/21/2019 8:00 0 20

 Normalization 8/21/2019 8:00 0 4

SQL General
Programming 8/21/2019 8:00 0 6

 1

Ayoub Fares

SQL General
Programming 8/21/2019 8:00 0 6

Java General
Programming 8/21/2019 8:00 0 20

 Java forms 8/21/2019 8:00 0 20

 Group Meeting 8/21/2019 19:00 1 N/A

1

Tyler Nullmeier

SQL General
Programming 8/21/2019 8:00 0 6

Java General
Programming 8/21/2019 8:00 0 20

 ERD Tables 8/21/2019 8:00 2 2

 CSV Files 8/21/2019 8:00 0 2

 2

Trent Jones

 Group Meeting 8/21/2019 19:00 1 N/A

SQL General

Programming 8/21/2019 8:00 0 6

 Normalization 8/21/2019 8:00 0 4

 CSV Files 8/21/2019 8:00 0 2

 1

Aleena Khan

 Group Meeting 8/21/2019 19:00 1 N/A

SQL General

Programming 8/21/2019 8:00 0 6

 Normalization 8/21/2019 8:00 0 4

 CSV Files 8/21/2019 8:00 0 2

 1

Aidahta Natama

 Group Meeting 8/21/2019 19:00 1 N/A

SQL General

Programming 8/21/2019 8:00 0 6

 Normalization 8/21/2019 8:00 0 4

 CSV Files 8/21/2019 8:00 0 2

 1

Eduardo Tostado

 Group Meeting 8/21/2019 19:00 1 N/A

 Java General Programming 8/21/2019 8:00 0 6

 Java Forms 8/21/2019 8:00 0 4

 CSV Files 8/21/2019 8:00 0 2

 1

Team Status Report

Group Name: CoogNet
Project Manager: Kavon Sabet/ Daniel Howard Date: August 30, 2019

Week two status report. This week CoogNet has been working on the following

deliverables listed below. This past week we focused on our ERD and data dictionary in

an attempt to get 30 tables. The following is a breakdown per person of what each

member is expected to do and has done so far.

CoogNet Deliverable Description
Start

Date/Time
Hours

Worked
Est. Hours
Remaining

Kavon Sabet

 Group Meeting 8/26/2019 19:00 2 N/A

 SQL Scripts 8/26/2019 8:00 0 4

 CSV Files 8/26/2019 8:00 0 2

SQL General
Programming 8/26/2019 8:00 0 6

 2

Daniel Howard

 Group Meeting 8/26/2019 8:00 2 N/A

 Java Forms 8/26/2019 8:00 0 40

 ERD Tables 8/26/2019 8:00 2 2

SQL General
Programming 8/26/2019 8:00 0 6

 4

Jorge Sanchez

 Group Meeting 8/26/2019 19:00 2 N/A

Java General
Programming 8/26/2019 8:00 0 20

 Normalization 8/26/2019 8:00 0 4

SQL General
Programming 8/26/2019 8:00 0 6

 2

Ayoub Fares

SQL General
Programming 8/26/2019 8:00 0 6

Java General
Programming 8/26/2019 8:00 0 20

 Java forms 8/26/2019 8:00 0 20

 Group Meeting 8/26/2019 19:00 2 N/A

2

Tyler Nullmeier

SQL General
Programming 8/26/2019 8:00 0 6

Java General
Programming 8/26/2019 8:00 0 20

 ERD Tables 8/26/2019 8:00 2 2

 CSV Files 8/26/2019 8:00 0 2

 2

Trent Jones

 Group Meeting 8/26/2019 19:00 2 N/A

 SQL Scripts 8/26/2019 8:00 0 6

 Normalization 8/26/2019 8:00 0 4

 CSV Files 8/26/2019 8:00 0 2

 2

Aleena Khan

 Group Meeting 8/26/2019 19:00 2 N/A

 SQL Scripts 8/26/2019 8:00 0 6

 Normalization 8/26/2019 8:00 0 4

 CSV Files 8/26/2019 8:00 0 2

 2

Aidahta Natama

 Group Meeting 8/26/2019 19:00 2 N/A

 SQL Scripts 8/26/2019 8:00 0 6

 Normalization 8/26/2019 8:00 0 4

 CSV Files 8/26/2019 8:00 0 2

 2

Eduardo Tostado

 Group Meeting 8/21/2019 19:00 2 N/A

 Java General Programming 8/21/2019 8:00 0 6

 Java Forms 8/21/2019 8:00 0 4

 CSV Files 8/21/2019 8:00 0 2

 2

Please copy and paste the latest version/screenshot of your projects Entity
Relational Diagram (ERD):

Team Status Report

Group Name: CoogNet
Project Manager: Kavon Sabet/ Daniel Howard Date: October 21,
2019

Week eight status report. This week CoogNet has been working on the following

deliverables listed below. The following is a breakdown of what each member is

expected to do and has done so far.

CoogNet Deliverable Description
Start

Date/Time
Hours

Worked
Est. Hours
Remaining

Kavon Sabet

 Group Meeting
10/15/2019

19:00 2 N/A

 SQL Scripts 10/15/2019 8:00 6 0

 CSV Files 10/15/2019 8:00 2 0

SQL General
Programming 10/15/2019 8:00 6 0

 16

Daniel Howard

 Group Meeting 10/15/2019 8:00 2 N/A

 Normalization 10/15/2019 8:00 4 0

 ERD Tables 10/15/2019 8:00 4 0

SQL General
Programming 10/15/2019 8:00 6 0

 16

Jorge Sanchez

 Group Meeting
10/15/2019

19:00 2 N/A

 CSV Files 10/15/2019 8:00 2 0

 Normalization 10/15/2019 8:00 4 0

SQL General
Programming 10/15/2019 8:00 6 0

 14

Ayoub Fares

 CSV Files 10/15/2019 8:00 2 0

Java General
Programming 10/15/2019 8:00 16 4

 Java forms 10/15/2019 8:00 16 24

 Group Meeting
10/15/2019

19:00 2 N/A

36

Tyler Nullmeier

SQL General
Programming 10/15/2019 8:00 6 0

Java General
Programming 10/15/2019 8:00 16 4

 ERD Tables 10/15/2019 8:00 4 0

 CSV Files 10/15/2019 8:00 2 0

 28

Eduardo Tostado

SQL General
Programming 10/15/2019 8:00 6 0

Java General
Programming 10/15/2019 8:00 16 4

 ERD Tables 10/15/2019 8:00 4 0

 CSV Files 10/15/2019 8:00 2 0

 28

Trent Jones

 Group Meeting 10/15/2019 8:00 2 N/A

SQL General
Programming 10/15/2019 8:00 14 6

 Normalization 10/15/2019 8:00 4 0

 CSV Files 10/15/2019 8:00 1 1

 19

Aleena Khan

 Group Meeting

10/15/2019
19:00 2 N/A

 SQL Scripts 10/15/2019 8:00 6 0

 Normalization 10/15/2019 8:00 4 0

 CSV Files 10/15/2019 8:00 2 0

 14

Aidahta Natama

 Group Meeting

10/15/2019
19:00 2 N/A

 SQL Scripts 10/15/2019 8:00 6 0

 Normalization 10/15/2019 8:00 4 0

 CSV Files 10/15/2019 8:00 2 0

 14

Please copy and paste the latest version/screenshot of your projects Entity
Relational Diagram (ERD):

Team Status Report

Group Name: CoogNet
Project Manager: Kavon Sabet/ Daniel Howard Date: October 27,
2019

Week nine status report. This week CoogNet has been working on the following

deliverables listed below. The following is a breakdown of what each member is

expected to do and has done so far.

CoogNet Deliverable Description
Start

Date/Time
Hours

Worked
Est. Hours
Remaining

Kavon Sabet

 Group Meeting
10/22/2019

19:00 2 N/A

 SQL Scripts 10/22/2019 8:00 6 0

 CSV Files 10/22/2019 8:00 2 0

SQL General
Programming 10/22/2019 8:00 6 0

 16

Daniel Howard

 Group Meeting 10/22/2019 8:00 2 N/A

 Normalization 10/22/2019 8:00 4 0

 ERD Tables 10/22/2019 8:00 4 0

SQL General
Programming 10/22/2019 8:00 6 0

 16

Jorge Sanchez

 Group Meeting
10/22/2019

19:00 2 N/A

 CSV Files 10/22/2019 8:00 2 0

 Normalization 10/22/2019 8:00 4 0

SQL General
Programming 10/22/2019 8:00 6 0

 14

Ayoub Fares

 CSV Files 10/22/2019 8:00 2 0

Java General
Programming 10/22/2019 8:00 20 0

 Java forms 10/22/2019 8:00 20 20

 Group Meeting
10/22/2019

19:00 2 N/A

44

Tyler Nullmeier

SQL General
Programming 10/22/2019 8:00 6 0

Java General
Programming 10/22/2019 8:00 20 0

 ERD Tables 10/22/2019 8:00 4 0

 CSV Files 10/22/2019 8:00 2 0

 32

Eduardo Tostado

SQL General
Programming 10/22/2019 8:00 6 0

Java General
Programming 10/22/2019 8:00 20 0

 ERD Tables 10/22/2019 8:00 4 0

 CSV Files 10/22/2019 8:00 2 0

 32

Trent Jones

 Group Meeting 10/22/2019 8:00 2 N/A

SQL General
Programming 10/22/2019 8:00 17 3

 Normalization 10/22/2019 8:00 4 0

 CSV Files 10/22/2019 8:00 1 1

 22

Aleena Khan

 Group Meeting

10/22/2019
19:00 2 N/A

 SQL Scripts 10/22/2019 8:00 6 0

 Normalization 10/22/2019 8:00 4 0

 CSV Files 10/22/2019 8:00 2 0

 14

Aidahta Natama

 Group Meeting

10/22/2019
19:00 2 N/A

 SQL Scripts 10/22/2019 8:00 6 0

 Normalization 10/22/2019 8:00 4 0

 CSV Files 10/22/2019 8:00 2 0

 14

Please copy and paste the latest version/screenshot of your projects Entity
Relational Diagram (ERD):

Team Status Report

Group Name: CoogNet
Project Manager: Kavon Sabet/ Daniel Howard Date: November 3,
2019

Week ten status report. This week CoogNet has been working on the following

deliverables listed below. We’re finishing up what’s left of things to do, only a few forms

left to complete. The following is a breakdown of what each member is expected to do

and has done so far.

CoogNet Deliverable Description
Start

Date/Time
Hours

Worked
Est. Hours
Remaining

Kavon Sabet

 Group Meeting
10/29/2019

19:00 2 N/A

 SQL Scripts 10/29/2019 8:00 6 0

 CSV Files 10/29/2019 8:00 2 0

SQL General
Programming 10/29/2019 8:00 6 0

 16

Daniel Howard

 Group Meeting 10/29/2019 8:00 2 N/A

 Normalization 10/29/2019 8:00 4 0

 ERD Tables 10/29/2019 8:00 4 0

SQL General
Programming 10/29/2019 8:00 6 0

 16

Jorge Sanchez

 Group Meeting
10/29/2019

19:00 2 N/A

 CSV Files 10/29/2019 8:00 2 0

 Normalization 10/29/2019 8:00 4 0

SQL General
Programming 10/29/2019 8:00 6 0

 14

Ayoub Fares

 CSV Files 10/29/2019 8:00 2 0

Java General
Programming 10/29/2019 8:00 20 0

 Java forms 10/29/2019 8:00 32 8

 Group Meeting
10/29/2019

19:00 2 N/A

56

Tyler Nullmeier

SQL General
Programming 10/29/2019 8:00 6 0

Java General
Programming 10/29/2019 8:00 20 0

 ERD Tables 10/29/2019 8:00 4 0

 CSV Files 10/29/2019 8:00 2 0

 32

Eduardo Tostado

SQL General
Programming 10/29/2019 8:00 6 0

Java General
Programming 10/29/2019 8:00 20 0

 ERD Tables 10/29/2019 8:00 4 0

 CSV Files 10/29/2019 8:00 2 0

 32

Trent Jones

 Group Meeting 10/29/2019 8:00 2 N/A

SQL General
Programming 10/29/2019 8:00 19 1

 Normalization 10/29/2019 8:00 4 0

 CSV Files 10/29/2019 8:00 1 1

 24

Aleena Khan

 Group Meeting

10/29/2019
19:00 2 N/A

 SQL Scripts 10/29/2019 8:00 6 0

 Normalization 10/29/2019 8:00 4 0

 CSV Files 10/29/2019 8:00 2 0

 14

Aidahta Natama

 Group Meeting

10/29/2019
19:00 2 N/A

 SQL Scripts 10/29/2019 8:00 6 0

 Normalization 10/29/2019 8:00 4 0

 CSV Files 10/29/2019 8:00 2 0

 14

Please copy and paste the latest version/screenshot of your projects Entity
Relational Diagram (ERD):

Team Status Report

Group Name: CoogNet
Project Manager: Kavon Sabet/ Daniel Howard Date: November 10, 2019

Final week of the project before the presentation. At this point we’re all done with

our parts, we just need to plan on our presentation.

CoogNet Deliverable Description
Start

Date/Time
Hours

Worked
Est. Hours
Remaining

Kavon Sabet

 Group Meeting
11/10/2019

19:00 2 N/A

 SQL Scripts 11/10/2019 8:00 6 0

 CSV Files 11/10/2019 8:00 2 0

SQL General
Programming 11/10/2019 8:00 6 0

 16

Daniel Howard

 Group Meeting 11/10/2019 8:00 2 N/A

 Normalization 11/10/2019 8:00 4 0

 ERD Tables 11/10/2019 8:00 4 0

SQL General
Programming 11/10/2019 8:00 6 0

 16

Jorge Sanchez

 Group Meeting
11/10/2019

19:00 2 N/A

 CSV Files 11/10/2019 8:00 2 0

 Normalization 11/10/2019 8:00 4 0

SQL General
Programming 11/10/2019 8:00 6 0

 14

Ayoub Fares

 CSV Files 11/10/2019 8:00 2 0

Java General
Programming 11/10/2019 8:00 20 0

 Java forms 11/10/2019 8:00 40 0

 Group Meeting
11/10/2019

19:00 2 N/A

64

Tyler Nullmeier

SQL General
Programming 11/10/2019 8:00 6 0

Java General
Programming 11/10/2019 8:00 20 0

 ERD Tables 11/10/2019 8:00 4 0

 CSV Files 11/10/2019 8:00 2 0

 32

Eduardo Tostado

SQL General
Programming 11/10/2019 8:00 6 0

Java General
Programming 11/10/2019 8:00 20 0

 ERD Tables 11/10/2019 8:00 4 0

 CSV Files 11/10/2019 8:00 2 0

 32

Trent Jones

 Group Meeting 11/10/2019 8:00 2 N/A

SQL General
Programming 11/10/2019 8:00 20 0

 Normalization 11/10/2019 8:00 4 0

 CSV Files 11/10/2019 8:00 2 0

 28

Aleena Khan

 Group Meeting

11/10/2019
19:00 2 N/A

 SQL Scripts 11/10/2019 8:00 6 0

 Normalization 11/10/2019 8:00 4 0

 CSV Files 11/10/2019 8:00 2 0

 14

Aidahta Natama

 Group Meeting

11/10/2019
19:00 2 N/A

 SQL Scripts 11/10/2019 8:00 6 0

 Normalization 11/10/2019 8:00 4 0

 CSV Files 11/10/2019 8:00 2 0

 14

Please copy and paste the latest version/screenshot of your projects Entity
Relational Diagram (ERD):

